

Remote Sensing Monitoring and GIS Modeling –

Lake Watch of Lake Martin Initiative

Luoheng Han Department of Geography University of Alabama

John Glasier Lake Watch of Lake Martin

Lake Watch Project Support

Assess adequacy of current citizen-monitoring capabilities

- Test new monitoring capabilities
- Facilitate education outreach activities

Citizen-Group Research Questions?

To what extent can AWW monitoring capabilities measure nutrient (and sediment) concentrations and their lake effects?

[Both current and proposed capabilities for the project]

- Are current AWW (shoreline) monitoring data representative of respective embayment conditions?
- Can close-range hyperspectral data estimate Chlorophyll-a concentrations?
- What's the optimal "mix" of AWW citizen monitoring capabilities that can satisfy long-term needs?

Quiz Time

Sample Site Water Color – Seasonal and Spatial Trends

Sample Site Water Color - Inter-year Spatial Trends

Reflectance (%) Calculation

$$\rho = \frac{L_{\uparrow}}{E_{\downarrow}}$$

L is upwelling radiance

E is downwelling irradiance

Hyperspectral Sensors

- ASD VNIR FieldSpec Spectrometer
 - UA Department of Geography
 - Wavelength Range (nm): 350-1150 (701 channels)
- The StellarNet EPP2000 Spectrometer
 - LWLM
 - Wavelength Range (nm): 350-850 (1000 channels)

Remote Sensing Initiative – Hyperspectral Reflectance Measurements of Chlorophyll Concentration and Related Water Quality Predictors

StellarNet, Inc. Spectrometer (Model EPP2000C, 185 – 850nm, 0.5nm resolution)

Hyperspectral Sensing at Close Range

Preliminary Results

ASD &
StellarNet
Spectrometers

Comparable Performance

Sample Site Water Color – Inter-year Spatial Trends

Spectral Reflectance Comparison – LWLM open-water monitoring sites

Wavelength (nm)

Sample Water Color – Onsite vs. Filtered Suspended Solids

Testing and Data Collection Continues

- Demonstrate utility for AWW group use
 - > Reflectance correlations and regression models
 - > Assess color-metric software
- Complete duel-head modification
- Refine sampling techniques & analysis
- Enhance field portability

Homeland Security Version?

Questions?

Landsat 5 TM Scene (Path: 20/Row: 37)

Three cloud free scenes

10/22/03

4/15/04

Mosaiced Landsat 5 TM Images Covering the Upper, Middle, and Lower Tallapoosa River Watersheds

Land Use/Land Cover and Lake Martin Chlorophyll

What is a GIS?

A GIS is a computer system capable of assembling, storing, manipulating, and displaying geographically referenced information, i.e. data, identified by location.

Strength of GIS

The integration of data in different forms through a GIS

Soil and Water Assessment Tool (SWAT)

SWAT was developed to predict the effects of land management practices on:

- water
- sediment
- agricultural chemical yields
 For use on large, complex watersheds with varying soils, landuse, and management conditions over long periods of time

The Upper, Middle, and Lower Tallapoosa River Watersheds

Land Use/Land Cover Derived From Landsat 5 TM Image Acquired October 22, 2003

Digital Elevation Model For The Middle Tallapoosa River Watershed

The Subbasins with major water bodies

Precipitation Map For April 2004

Surface Runoff Map For April 2004

Sediment Yield Map For April 2004

Nitrate Surface Runoff Map For April 2004

Organic Nitrogen Map For April 2004

Soluble Phosphorus Map For April 2004

Organic Phosphorus Map For April 2004

Sedimentary Phosphorus Map For April 2004

Acknowledgements

- USDA, Cooperative Research, Education and Extension System: funding
- AU, ADEM, LWLM, LWPOA: water sampling
- Russel Taylor and Gang Wang, graduate research assistants of the Department of Geography, UA: assists in data collection and processing, and GIS modeling

Thank you.