Select Page

Experimentally and theoretically observed native pH shifts in a nanochannel array –January 2009

Danny Bottenus, Youn-Jin Oh, Sang M. Han, and Cornelius F. Ivory,-Department of Chemical Engineering, Washington State University and Department of Chemical and Nuclear Engineering, Center for High Technology Materials, University of New Mexico.
Lab-on-a-chip (LOC) technology provides a powerful platform for simultaneous separation, purification, and identification of low concentration multicomponent mixtures. As the characteristic dimension of LOC devices decreases down to the nanoscale, the possibility of containing an entire lab on a single chip is becoming a reality. This research examines one of the unique physical characteristics of nanochannels, in which native pH shifts occur. As a result of the electrical double layer taking up a significant portion of a 100 nm wide nanochannel, electroneutrality no longer exists in the channel causing a radial pH gradient. This work describes experimentally observed pH shifts as a function of ionic strength using the fluorescent pH indicator 5-(and-6)-carboxy SNARF®-1 and compares it to a model developed using Comsol Multiphysics. At low ionic strengths (~ 3 mM) the mean pH shift is approximately 1 pH unit whereas at high ionic strengths (~ 150 mM) the mean pH shift is reduced to 0.1 pH units. An independent analysis using fluorescein pH indicator is also presented supporting these findings.Two independent non-linear simulations coupling the Nernst-Planck equation describing transport in ionic solutions subjected to an electric field and Poisson’s equation to describe the electric field as it relates to the charge distribution are solved using a finite element solver. In addition, the effects of chemical activities are considered in the simulations. The first numerical simulation is based on a surface ζ-potential which significantly underestimates the experimental results for most ionic strengths. A modified model assuming that SNARF and fluorescein molecules are able to diffuse into the hydrolyzed SiO2 phase, and in the case of the SNARF molecule, able to bind to neutral regions of the SiO2 phase agrees quantitatively with experimental results. The filtered emission spectrum was then detected with an EPP2000-CXRs UV-VIS spectrophotometer (StellarNet Inc, Tampa Bay, FL, USA). Spectra Wiz software (StellarNet Inc, Tampa Bay, FL, USA) measured the ratio of emission intensity at 580 nm and 640 nm, respectively.

nihms-217606smaller